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Abstract

We develop an incremental generalized expectation max-
imization (GEM) framework to model the multiframe blind
deconvolution problem. A simplistic version of this prob-
lem was recently studied by Harmeling et al. [4]. We
solve a more realistic version of this problem which in-
cludes the following major features: (i) super-resolution
ability despite noise and unknown blurring; (ii) saturation-
correction, i.e., handling of overexposed pixels that can oth-
erwise confound the image processing; and (iii) simultane-
ous handling of color channels. These features are seam-
lessly integrated into our incremental GEM framework to
yield simple but efficient multiframe blind deconvolution al-
gorithms. We present technical details concerning critical
steps of our algorithms, especially to highlight how all op-
erations can be written using matrix-vector multiplications.
We apply our algorithm to real-world images from astron-
omy and super resolution tasks. Our experimental results
show that our methods yield improved resolution and de-
convolution at the same time.

1. Introduction

Blind deconvolution of blurred images is a well-
known difficult task. In this paper we study a particular
blind-deconvolution setup: multiframe blind deconvolution
(MFBD). Here one seeks to recover an underlying “true”
image from a sequence of blurred (and noisy) observations.
By having access to multiple blurred samples, one can hope
to obtain a better reconstruction than would be possible
from just a single image. The reconstruction task is however
not trivial because each observation is differently blurred
and noisy. Recently, in the context of Computational Pho-
tography Harmeling et al. [4] introduced a simple and effi-
cient approach for MFBD. However, their setup lacks sev-
eral crucial features that must be considered for deconvolu-
tion in a realistic multiframe scenario. We expand on this
claim below.

1.1. Motivation & Contributions

For concreteness, we also focus (like [4]) on MFBD in
astronomy, though clearly astronomy is not the only possi-
ble application domain for our algorithms. To ensure a con-
trolled but realistic setup we caputured our own images of
the sky; doing so models the typical difficulties astronomers
might face when working with multiple frames of the same
underlying object.

[4] et al. broadly had the following approach to MFBD:
(i) at each time-step obtain a blurry (and noisy) image frame
as input; (ii) subjected this frame to blind deconvolution to
estimate the blur kernel and the “true” image; and (iii) up-
date an estimate of the true image and discard the observa-
tion. This simple approach immediately raises the question
whether we can better exploit the observations without dra-
matically impacting storage and computational costs?

We show that one can indeed exploit the entire sequence
to improve reconstruction quality. Having an entire se-
quence at our disposal suggests that we should be able
to super-resolve [7] the reconstructed image. But one major
hurdle still remains: the individual frames are both blurred
and noisy which impedes super-resolution. We however de-
sign an algorithm that combines super-resolution with blind
deconvolution, and obtain improved reconstructions.

A problem that particularly plagues astronomy images is
that of saturation of pixels due to overexposure. These pix-
els receive so many photons that they reach the peak inten-
sity permitted by the hardware. Such saturated pixels make
it difficult to reliably deblur, denoise, or to even run an infer-
ence procedure such as estimating the true brightness (mag-
nitude) of a star. We note that another problem that arises
with long exposures is that one loses the higher-frequency
structure (finer details) of the image due to “averaging.”—a
problem that super-resolution can alleviate.

We present a simple but effective approach to tackle the
adverse effects of overexposure. Saturation-correction also
benefits super-resolution, allowing it to more reliably recon-
struct long-time exposures. The MFBD paper [4] in con-
trast considered only short-term exposures, and ignored the
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influence of saturation.
The third (and last) main enhancement that we show is

how to handle images with different color channels.
To seamlessly integrate super-resolution, saturation-

correction, and color channels into MFBD, we provide a
theoretical model that views the whole setup using incre-
mental generalized expectation maximization (GEM) [6].
This viewpoint also lends theoretical justification to the
heuristic procedure of [4], while opening doors to further
theoretical analysis (e.g., convergence).

1.2. Related Work

Beyond the immediately relevant work of Harmeling et
al. [4], there are several other papers that study multiframe
deblurring. Some references are: [9, 12, 13, 1, 5]. All of
these papers approach the multiframe problem in a non-
incremental fashion as opposed to our incremental choice.
When the number of frames grows, such non-incremental
approaches rapidly become computationally prohibitive,
and surprisingly, as observed by [4], possibily even inferior
(this observation can be now justified using our incremental
GEM interpretation; see [6] for more intuition). Additional
relevant astronomy papers are summarized in [4].

In the non-astronomy setting, the idea of using more than
one frame to correct for motion (or even other blurring)
has recently gained attention [8, 3], though similar previ-
ous ideas also exist as noted by Cai et al. [3]. We observe
that even though the literature on blind-deconvolution and
super-resolution is vast, only a counted few papers discuss
the setting where both are done simultaneously.

Directly relevant is the work of Šroubek et al. [10,
11] who consider simultaneous (non-incremental) super-
resolution and blind deconvolution, but depend on image
and blur priors. Šroubek et al. themselves note (in Section
4.1 of [11]) that their method becomes unstable for larger
super resolution factors than 2.5. Our model exploits the
abundance of data by not assuming any image or blur kernel
priors, thereby leading to a simpler algorithm with almost
no parameter tuning. Our method is applicable to much
higher super resolution factors than 2.5. In fact in the ex-
periments section we will resolve datasets that Šroubek et
al. [11] considered up to a factor of eight and compare it
against their reported results.

1.3. Summary of Remainder

The remainder of this paper is organized as follows. Sec-
tion 2 presents an incremental GEM view of the problem.
Subsequently in Section 3 and its subsections, we present
our extensions to the multiframe blind deconvolution setup,
including super-resolution, correcting for overexposed pix-
els, and simultaneous handling of several color channels. In
Section 4 we describe some of the technical details that are

crucial for implementing the algorithm. Finally, Section 5
presents the results of our algorithms on real-world data.

2. Blind deconvolution as incremental GEM

For notational simplicity we describe everything in
terms of one-dimensional images and point spread func-
tions (PSFs). Our exposition easily generalizes to two-
dimensional images and PSFs, and we detail this later in
Section 4, especially because in an actual implementation
we work with 2D images.

We denote the “true” image by x, each observed (input)
image by yt, and each PSF by ft. Throughout the paper
we use f ∗ x to represent convolution. All results apply to
circular and non-circular convolutions.

First we derive the algorithm of Harmeling et al. [4] as
an instance of incremental GEM. For this derivation we
view the image sequence y1, . . . , yT as observed random
variables, while the PSFs are seen as latent variables. The
sought-after image x is a parameter of a factorizing proba-
bilistic model,

p(y1, . . . , yT |x) =
T∏

t=1

∫
p(yt, ft|x)dft. (1)

Given the observed frames y1, . . . , yT , our goal is to find the
maximum likelihood estimate of parameter x. As usual, the
log-likelihood `(x) = log p(y1, . . . , yT |x) can be bounded
from below using Jensen’s inequality,

`(x) =
T∑

t=1

log
∫

p(yt, ft|x)dft (2)

≥
T∑

t=1

∫
qt(ft) log

p(yt, ft|x)
qt(ft)

dft (3)

=
T∑

t=1

F t(qt, x) (4)

where each qt is an arbitrary distribution of ft. The incre-
mental variant of EM picks some image yt and estimates qt

and xt via:

E-step: find qt that maximizes F t(qt, xt−1),
M-step: find xt that maximizes F t(qt, xt).

Instead of searching for arbitrary distributions qt we re-
strict ourselves to delta peaks which we parametrize with
ft. This is merely the “winner-take-all” variant of incre-
mental EM [6]. This choice for ft greatly simplifies the
E- and M-step to a maximization of p(yt, ft|x). Assum-
ing further a flat prior on ft, the E- and M-step maximize
p(yt|ft, x) with respect to ft and x, respectively.



Modelling each observed frame yt as a convolution of
the underlying image (parametrized by) x with some un-
known PSF ft plus Gaussian noise, the density p(yt|ft, x)
can be chosen to be a Gaussian with mean ft ∗ x and some
diagonal covariance,

p(yt|ft, x) ∝ exp
(
− 1

2

∥∥yt − ft ∗ x
∥∥2)

. (5)

This choice naturally leads to E- and M-steps that are (non-
negative) least squares problems.

The M-step requires further discussion. When updating
the parameter x, it is also sensible to perform only a single
(or a few steps) of the minimization of ‖yt − ft ∗ x‖2 with
respect to x. Do so is particularly useful if we consider non-
circular convolution, for which x is longer than yt. Thus,
instead of a full minimization with respect to x, we prefer
to perform merely an ascent in the M-step, which is nothing
but GEM.

Since we are dealing with images we further assume that
x and f1, . . . , fT are nonnegative. Thus, the incremental
GEM approach with “winner-take-all” distributions for ft

results in the following update steps, which are executed
one by one on all observed images y1, . . . , yT :

E-step: find ft ≥ 0 that minimizes

‖yt − ft ∗ xt−1‖2, (6)

M-step: find xt ≥ 0 such that

‖yt − ft ∗ xt‖2 ≤ ‖yt − ft ∗ xt−1‖2. (7)

These are exactly the two alternating steps that [4] pro-
posed, but motivated only heuristically.

3. Improved Multiframe Blind Deconvolution
The basic algorithm described above is able to recover

the underlying, clear image given a sequence of blurry im-
ages with similar resolution [4]. We discuss now how to
obtain super-resolved results and how to deal with saturated
pixels. We also discuss how images with different color
channels can be handled.

3.1. Super-resolution

Since we are interested in a single image x but have sev-
eral observations yt, despite blurring there is hope that we
could infer a super-resolved image x, provided we incor-
porate change of resolution into the forward model. For
resolution change we define the resizing matrix,

Dn
m = (Im ⊗ 1T

n )(In ⊗ 1m)/m, (8)

where Im is the m × m identity matrix, 1m is an m di-
mensional column vector of ones, and ⊗ denotes the Kro-
necker product. Dn

m transforms a vector v of length n into

a vector of length m. Note that the sum of v’s entries
1T

nv = 1T
mDn

mv is preserved (formally verified by apply-
ing Eq. (20) twice). This is a favorable property for images,
as the number of photons observed should not depend on
the resolution. Note that even if the sizes m and n are not
multiples of each other, Dn

m will interpolate appropriately.
To avoid double indexing let n = ly be the length of

y. For k times super-resolution we choose x and f large
enough such that the vector f ∗ x has length kn. Then we
replace the density of yt given x and ft by,

p(yt|ft, x) ∝ exp
(
− 1

2‖yt −Dkn
n (ft ∗ x)‖2

)
(9)

which leads to the following update steps:

E-step: find ft ≥ 0 that minimizes

‖yt −Dkn
n (ft ∗ xt−1)‖2, (10)

M-step: find xt ≥ 0 such that

‖yt −Dkn
n (ft ∗ xt)‖2 ≤ ‖yt −Dkn

n (ft ∗ xt−1)‖2.
(11)

Note that the positive scaling factor k is not restricted to be
integral.

3.2. Overexposed pixels

As previously motivated, saturation impacts image
restoration considerably. Even more so in astronomical
imaging where we would like to capture faint stars together
with stars that are orders of magnitude brighter. In such a
setup, overexposed pixels occur frequently and pose prob-
lems. A realistic deconvolution method should be able to
deal with pixels that are saturated, i.e., those that hit (or
come close to) the maximal possible pixel value.

One way to deal with these pixels is to identify them, but
not let them impact the objective function much, by ignor-
ing them. However, since each frame yt can have different
pixels attaining saturation (different frames are aligned dif-
ferently), we have to check at each iteration which pixels
in the current yt are saturated. To ignore these pixels we
define a weighting matrix,

Ct = Diag
(
[yt < 65535]

)
(12)

assuming that the value of a saturated pixel is 65535, and us-
ing the Iverson brackets component-wise, i.e., [yt < 65535]
is a vector of ones and zeros depending on whether the
corresponding component of yt is less than 65535. Then,
we can write the updates ignoring the saturated pixels sim-
ply by replacing the Euclidean norm with a weighted norm
‖v‖2C = vT Cv. The update steps now become:



E-step: find ft ≥ 0 that minimizes

‖yt − ft ∗ xt−1‖2Ct
, (13)

M-step: find xt ≥ 0 such that

‖yt − ft ∗ xt‖2Ct
≤ ‖yt − ft ∗ xt−1‖2Ct

. (14)

Note that this approach is equivalent to removing the satu-
rated pixels from the probabilistic model.

One might ask whether we can really recover pixels in
x that are saturated in most of the frames yt? The answer
is yes, and can be understood as follows. The photons cor-
responding to such a pixel in x have been spread across a
whole set of pixels in each frame yt because of the PSF ft.
Thus, if not all these pixels in yt are saturated, the true value
for the corresponding pixel in x will be recovered.

Using the same ideas as above, we can also ignore dead
pixels that do not record any actual intensity, but rather re-
turn arbitrary values (due to the camera electronics). Most
of these pixels can be identified by finding outliers in the
components of the residual vector yt− ft ∗xt. Setting their
corresponding entries in Ct to zero also makes our method
robust against dead pixels.

3.3. Simultaneous Estimation of Color Channels

Color images can be seen as at stack of grey images, each
for a different color channel, e.g., y

(R)
t , y

(G)
t , y

(B)
t for red,

green, and blue, respectively. The simplest option to deal
with colors is to apply our method to each channel sepa-
rately and then to combine the results by image registration.
However, a simpler solution exists because sometimes all
colors channels share the same PSF f . In such cases, we
can model yt as

p(yt|ft, x) ∝ exp
(
− 1

2

∥∥∥∥∥∥∥
 y

(R)
t

y
(G)
t

y
(B)
t

−
 ft ∗ x(R)

ft ∗ x(G)

ft ∗ x(B)


∥∥∥∥∥∥∥

2)
.

(15)

Translating this model assumption to an E- and M-step is
straightforward. Section 4 shows how convolution of multi-
ple color channels can also be seen as a matrix-vector mul-
tiplication operation, which greatly eases implementation.

4. Implementation details

Although in the theoretical part we only consider vec-
tors, one-dimensional convolutions, and vector-norms, all
results naturally generalize to two-dimensional images.
However, efficiently implementing these algorithms for
two-dimensional images requires careful consideration, and
some technical details which this section aims to provide.

4.1. Convolution as Matrix-Vector Multiplication

We introduced f ∗ x as the convolution, which could be
either circular or non-circular. Both can also be written in
two ways as matrix-vector multiplication,

f ∗ x = Fx = Xf (16)

depending whether our interest is in x or f . Matrices F and
X can be specified as

F = IT
y W−1 Diag(WIff)W (17)

X = IT
y W−1 Diag(Wx)WIf (18)

where for the circular convolution we drop IT
y . Matrix W is

the discrete Fourier transform matrix, i.e. Wx is the Fourier
transform of x. Diag(v) denotes the diagonal matrix with
vector v along its diagonal. If and Iy are zero-padding ma-
trices that ensure that Iff and Iyy have the same length as
x. Note that If appends zeros while Iy prepends zeros.

For two-dimensional images and PSFs we have to con-
sider two-dimensional Fourier transforms that can be writ-
ten as left- and right-multiplications with W , which can also
be represented as a single matrix-vector multiplication us-
ing the vectorization operator and Kronecker product,

vec(Wx W ) = (W ⊗W ) vec(x), (19)

noting that W is symmetric and Kronecker products fulfill

vec(A B CT ) = (C ⊗A) vec(B). (20)

Zero-padding for two-dimensional images can be written in
an similar way.

4.2. Resizing matrices for images

Resizing two-dimensional images can also be imple-
mented by left- and right-multiplications: let x be an m×n
image, then Dm

p x (Dn
q )T is an image of size p×q. Using

Eq. (20) we can write this operation as a matrix-vector mul-
tiplication as well,

vec
(
Dm

p x (Dn
q )T

)
=

(
Dn

q ⊗Dm
p

)
vec(x). (21)

4.3. Convolution of color image

Above we have shown how to write f∗x as matrix-vector
multiplications Fx and Xf . This can be generalized to im-
ages with different color channels: ft ∗ x(R)

ft ∗ x(G)

ft ∗ x(B)

 =

F 0 0
0 F 0
0 0 F

 x(R)

x(G)

x(B)

 =

 X(R)

X(G)

X(B)

 ft

(22)

These representations allow us to apply the whole machin-
ery to colored images.



E-step M-step
Algorithm A Ct A Ct

Basic Xt−1 I Ft I
Super-resolved Dkn

n Xt−1 I Dkn
n Ft I

Saturated Xt−1 Diag([yt < 65535]) Ft Diag([yt < 65535])

Table 1. How to formulate the presented extensions with the quadratic cost function in Eq. (23).

4.4. Multiplicative updates

The suggested algorithms do not depend on how the al-
ternating steps are implemented. [4] used LBFGS-B [2] for
their E-step, and EM-style multiplicative updates for their
M-step (similar updates can also be used for the E-step if
desired). An important observation here is to not even solve
for the PSF exactly, as was done by [4]. Doing so greatly
impacts not only efficiency, but sometimes also experimen-
tal results. Performing early-stopping can act like a regular-
izer and can prevent overfitting.

More generally, minimizing quadratic cost functions un-
der non-negativity constraints,

min
z≥0

‖y −Az‖2Ct
(23)

with ‖v‖2C = vT Cv, can be implemented via multiplicative
updates, e.g.,

zt+1 = zt �
AT Cty

AT CtAzt
, (24)

where one starts from a strictly positive initial value z0 > 0.
Table 1 summarizes how all of the presented approaches can
be implemented with multiplicative updates with appropri-
ate choices of A and Ct. We rely crucially on the fact that
the convolution f ∗ x can be represented either as matrix-
vector multiplications Fx or Xf .

5. Results on real images
The first experiments compare our method on some su-

per resolution tasks against the method of [11]. Then we
show results on astronomical images, which were recorded
using an off-the-shelf 12-inch f/10 MEADE LX200ACF
Schmidt-Cassegrain telescope. For the latter we used two
different cameras. The short exposure images were taken
using an AVT PIKE F-032B uncooled CCD camera. The
globular cluster M13 was imaged using a Canon EOS 5D
digital single lens reflex (DSLR).

5.1. Super-resolution examples

The method which is most closely related to ours is
the blind super-resolution approach of Šroubek et al. [11]
against which we will compare in the following. For this
we applied our method to some of the datasets of S. Farsiu

and P. Milanfar1 and show Šroubek et al.’s results reported
in [11]. For brevity we consider only the “text” dataset (20
frames of size 57× 49) and the “disk” dataset (20 frames of
size 57× 49).

The top rows of Figures 1 and 2 show typical input
frames of the corresponding image sequences. The bottom
rows show the result of our method for blind deconvolution
with increasing super resolution factor (for one, two, four,
and eight). We used the lower resolved images as initializa-
tions for the next scale factor. The obtained resolution with
a factor of eight is clearly superior to the result of [11] who
limited the factor to two in order to avoid stability issues.
Note that our result with a factor of two compares favorably
to Šroubek’s as well.

5.2. Orion Trapezium

In our first experiment with astronomical images, we
used the fast AVT PIKE camera to record a short video
(191 frames acquired at 120 fps) of the Trapezium in the
constellation Orion. It is formed by four stars ranging in
brightness from magnitude 5 to magnitude 8, with angular
separations around 10” to 20”. The exposure of the individ-
ual frames is sufficiently short to “freeze” the atmospheric
turbulence and thus retain the high-frequency information
which is present in the atmospheric PSF—see Figure 3 for
sample frames. Combining a stack of such frames to a sin-
gle high-resolution image is the goal of the field of lucky
imaging; usually this is achieved by registering and averag-
ing over a subset of “lucky” frames where the turbulence is
relatively small (and the “seeing” is thus good).

The first row of Figure 4 shows from left to right (a) an
enlarged unprocessed frame, (b) the deconvolution results
obtained by the basic algorithm of [4], (c) the result using
the proposed method to handle saturation, and (d) the results
if we additionally apply the proposed method for four times
super-resolution.

An important application in astronomy is the measure-
ment of the brightness of stars and other celestial objects
(Photometry). To this end, a linear sensor response is re-
quired (for our purposes, the used CCD sensor may be as-
sumed linear). The intensity counts can then be translated

1Available from http://www.soe.ucsc.edu/∼milanfar/
software/sr-datasets.html.
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Figure 1. (a) Shown are three LR frames. (b) The BSR result. (c) The SR result. (d) Optical
zoom reference.

ten corresponding to the ”Text” sequence and Fig. 2(d) the BSR result. Finally, Fig. 2(e) shows
one frame out of ten corresponding to the ”Car” sequence and Fig. 2(f) the BSR result. In all
the cases the SR factor used was 2.

(a) (b) (c) (d) (e) (f)

Figure 2. Superresolution with registration. (a) Shown is one ”Disk” LR frame from the Farsiu
& Milanfar dataset. (b) BSR result. (c) Shown is one ”Text” LR frame from the same dataset.
(d) BSR result. (e) Shown is one ”Car” LR frame from the same dataset. (f) BSR result.

5. Conclusions
This paper presented a SR method which proved to be meaningful for cases when an insufficient
number of input LR images is available to perform SR with only integer factors, such as
two or three. To achieve truly robust methodology applicable in real situations, we adopted
the regularized energy minimization approach, which we solve by an alternating-minimization
scheme. The fundamental improvement on previously proposed SR methods is the notion of
estimating PSFs in the HR scale, which indirectly aligns LR images with subpixel accuracy.
Using registration parameters inside the algorithm instead of registering input images gives
better results and paves the way for including methods of making registration parameters more
accurate during reconstruction of the HR image [31, 36]
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Figure 1. (a) Shown are three LR frames. (b) The BSR result. (c) The SR result. (d) Optical
zoom reference.
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the cases the SR factor used was 2.
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Figure 2. Superresolution with registration. (a) Shown is one ”Disk” LR frame from the Farsiu
& Milanfar dataset. (b) BSR result. (c) Shown is one ”Text” LR frame from the same dataset.
(d) BSR result. (e) Shown is one ”Car” LR frame from the same dataset. (f) BSR result.

5. Conclusions
This paper presented a SR method which proved to be meaningful for cases when an insufficient
number of input LR images is available to perform SR with only integer factors, such as
two or three. To achieve truly robust methodology applicable in real situations, we adopted
the regularized energy minimization approach, which we solve by an alternating-minimization
scheme. The fundamental improvement on previously proposed SR methods is the notion of
estimating PSFs in the HR scale, which indirectly aligns LR images with subpixel accuracy.
Using registration parameters inside the algorithm instead of registering input images gives
better results and paves the way for including methods of making registration parameters more
accurate during reconstruction of the HR image [31, 36]
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Figure 2. Disk data: typical example frames (top row), results of our method for blind deconvolution with increasing super-resolution factor
compared with Šroubek’s results in [11] (bottom row from left to right).

into stellar magnitudes.2 Clearly, this is not directly possi-
ble for stars that saturate the CCD (i.e., where so many pho-
tons are recorded that the full well-capacities of the pixels
are exceeded). However, we can use the proposed method

2E.g., http://en.wikipedia.org/wiki/Apparent magnitude.

for deconvolution with saturation correction and reconstruct
the photon counts (image intensities) that we would have
recorded had the pixel not been saturated; then we convert
these into stellar magnitudes. For the Trapezium stars we
obtain the encouraging results shown in Table 2.



Figure 3. Orion Trapezium Cluster: example sequence of observed frames, y1, . . . , y10.

(a) (b) (c) (d)

Figure 4. Orion Trapezium Cluster: (a) the first observed frame, (b) x191 for basic algorithm [4], (c) x191 for saturation corrected, and
(d) x191 for saturation corrected and four times super-resolved. Top row shows the overall trapezium; bottom row shows the brightest star
enlarged. The bottom row should show large squared pixels (this should work in Acrobat Reader).

Star A B C D
True magnitude 6.7 - 7.5 8.0 - 8.5 5.1 6.7
Est. mag. (w. sat. cor.) 6.4 8.0 5.2 6.0
Est. mag. (w/o sat. cor.) 6.8 8.0 6.5 6.4

Table 2. True star brightnesses (note that stars A and B have vari-
able brightness), and values estimated after deconvolution, nor-
malizing the brightness of star B to 8.0 and computed under the
assumption of zero offset. The latter assumption is unrealistic,
rendering the absolute values inaccurate; nevertheless it is reassur-
ing that the proposed method for saturation correction leads to the
correct ordering of brightness values, with star C being the bright-
est.

5.3. Globular cluster M13

M13 is a globular cluster in the constellation Hercules,
around 25,000 light years away, with an apparent size of
around 20’. It contains several 100,000 stars, the brightest
of which has an apparent magnitude of 12. Such faint stars
cannot be imaged using our equipment using short expo-
sures; however, long exposures with budget equipment typ-
ically incur tracking errors, caused by telescope mounts that
do not perfectly compensate for the rotation of the earth.
In our case (focal length 3m, exposure times of 60sec per
frame), this induced a significant motion blur in the images
that we attempted to remove using the same algorithm used
above on short exposures.

The top row of Figure 5 displays a long exposure with
motion blur (left panel and the twice super-resolved re-
sult of our algorithm (right) applied to 26 motion degraded

frames. In the bottom row we clearly see details in our
reconstructed image (right) which where hidden in the
recorded frames (left).

6. Conclusion
We proposed an incremental generalized expectation

maximization framework for the multiframe blind deconvo-
lution problem. We showed how simple linear algebra mod-
ifications allow us to incorporate super-resolution as well as
saturatation correction for overexposed pixels, effectively
increasing the dynamic range of the sensor. We compared
our method against the results of [11] on some super reso-
lution benchmark problems and demonstrated its practical
applicability on astronomical images, including very short
exposures, where the convolution is caused by atmospheric
turbulence, as well as long exposures, where the convolu-
tion is induced by effective motion blur arising from me-
chanical inaccuracies in the telescope mount.
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